
Motivation ADO Model Advert Adore AdoB Conclusions

The Atomic Distributed Object Model for Distributed
System Verification
PhD Dissertation Defense

Wolf Honoré

Yale University

August 19, 2022

1 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Roadmap

▶ Motivation
▶ What is a distributed system?
▶ What is formal verification?
▶ Why are they important?

▶ ADO Overview
▶ Case Study: Advert
▶ Case Study: Adore
▶ Case Study: AdoB
▶ Conclusions

2 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

What is a Distributed System?

S1

S2 S3

3 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

What is a Distributed System?

Read

X

S1
state=X

S2
state=X

S3
state=X

4 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Replication: Challenges

Write(Y)

Write(Z)

S1
state=Y

S2
state=X

S3
state=Z

5 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Consensus: Reaching Agreement

S1

S2 S3

A

A A

VoteVote
Elect

election:
S1 collects

votes

6 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Consensus: Reaching Agreement

S1

S2 S3

A

A A

B local update:
S1 applies B

7 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Consensus: Reaching Agreement

S1

S2 S3

A

A A

Ack Commit

B

B commit:
S1 replicates B

2 out of 3 is
sufficient

8 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

What Can Go Wrong?

9 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Formal Verification: Proving Correctness

Specification

Theorem

Proof

Proof
Checker

program = ...

is_correct(program)

apply lemma1.
apply lemma 2.

...

10 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Abstraction Layers

11 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Abstraction Layers

Application

Theorem
write(x) followed by
read() returns x

12 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Abstraction Layers

Application

Theorem
Only leaders can commit

Protocol

S1
ldr=true

S2 S3

commit

13 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Abstraction Layers

ApplicationProtocol

S1
ldr=true

S2 S3

commit

Network

Theorem
Messages are

delivered in order

S1

S2 S3

14 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Network-Based Models

A BS1

A BS2

A BS3

C A BS1

A BS2

A BS3

C

DS2 adds
D

D

One packet
dropped

Individual servers
with local logs

C uncommitted

A BS1

A BS2

A BS3

C

D S2 replicates
its log

D committedS1 and S2 disagree

15 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

State Machine Replication (SMR)

A B Log grows
atomically

Single log

A B

Uncommitted
commands hidden

D

16 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Abstraction Spectrum

A BA BS1

A BS2

A BS3

C

D

SMRADONetwork-Based

ApplicationProtocolNetwork

?

17 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Prior Consensus Verification Work

IronFleet (SOSP ’15) Semi-automates refining network-level speci-
fications with SMT.

Verdi (PLDI ’15) Transforms simplified network specifications
into more fault-tolerant equivalents.

Paxos Made EPR (OOPSLA ’17) Reduces the safety of Paxos to a decidable
first-order logic.

Velisarios (ESOP ’18) Proves PBFT’s safety using happens-before
relations on network events.

Aneris (ESOP ’20) Supports modular network-based specifica-
tions with thread-level concurrency.

18 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Contributions

▶ ADO Model: A novel, protocol-level model for consensus.

▶ Compositional distributed application reasoning.
▶ Safety and liveness proofs.

▶ First to support hot reconfiguration.
▶ First to generically support benign and byzantine failures.

▶ Refinement with multiple protocols.
▶ Paxos (single, multi, vertical, CAS)
▶ Chain Replication
▶ Raft
▶ Jolteon

19 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Contributions

▶ ADO Model: A novel, protocol-level model for consensus.
▶ Compositional distributed application reasoning.

▶ Safety and liveness proofs.
▶ First to support hot reconfiguration.
▶ First to generically support benign and byzantine failures.

▶ Refinement with multiple protocols.
▶ Paxos (single, multi, vertical, CAS)
▶ Chain Replication
▶ Raft
▶ Jolteon

20 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Contributions

▶ ADO Model: A novel, protocol-level model for consensus.
▶ Compositional distributed application reasoning.
▶ Safety and liveness proofs.

▶ First to support hot reconfiguration.
▶ First to generically support benign and byzantine failures.

▶ Refinement with multiple protocols.
▶ Paxos (single, multi, vertical, CAS)
▶ Chain Replication
▶ Raft
▶ Jolteon

21 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Contributions

▶ ADO Model: A novel, protocol-level model for consensus.
▶ Compositional distributed application reasoning.
▶ Safety and liveness proofs.

▶ First to support hot reconfiguration.
▶ First to generically support benign and byzantine failures.

▶ Refinement with multiple protocols.
▶ Paxos (single, multi, vertical, CAS)
▶ Chain Replication
▶ Raft
▶ Jolteon

22 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Acknowledgments

▶ Jieung Kim: Paxos safety and refinement.
▶ Ji-Yong Shin: Paxos refinement, OCaml extraction, performance experiments.
▶ Longfei Qiu: Jolteon refinement.
▶ Yoonseung Kim: Jolteon refinement.

23 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Roadmap

▶ Motivation
▶ ADO Overview

▶ Atomic Distributed Objects
▶ Global state representation (cache tree).
▶ Atomic interface (pull, invoke, push).

▶ Case Study: Advert
▶ Case Study: Adore
▶ Case Study: AdoB
▶ Conclusions

24 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO State — Cache Tree

ECache MCache CCache

ECache MCache

ECache MCache

A CS1 A CS2 A BS3

CCache

ADO

Network-Based

25 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO State — Cache Tree

MCache
method=M

time=t

CCache
voters={...}

time=t

ECache
voters={...}

ldr=ID
time=t

Created by pull
(election)

Created by push
(commit)

Created by invoke
(local log update)

26 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Pull
ADO

Raft

S1
time=0

S2
time=0

S3
time=0

1. Ask for votes (packet dropped)
1. Ask for votes

2. Compare with local log
3. Vote

Empty Empty Empty

27 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Pull

ECache
voters={S1,S2}

ldr=S1
time=1

ADO

Raft

EmptyS1
time=1 EmptyS2

time=1 EmptyS3
time=0

1. Add ECache

28 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Invoke

ECache
voters={S1,S2}

ldr=S1
time=1

ADO

Raft

AS1
time=1 EmptyS2

time=1 EmptyS3
time=0

1. Append to log

29 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Invoke

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

ADO

Raft

AS1
time=1 EmptyS2

time=1 EmptyS3
time=0

1. Add MCache

30 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Push

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

ADO

Raft

AS1
time=1 EmptyS2

time=1 AS3
time=1

1. Replicate log (packet dropped)
1. Replicate log

3. Acknowledge
2. Update log

31 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Push

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

ADO

Raft

AS1
time=1 EmptyS2

time=1 AS3
time=1

CCache
voters={S1,S3}

time=1

1. Add CCache

32 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Steady State

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

ADO

Raft

AS1
time=1 EmptyS2

time=1 AS3
time=2

1. Ask for votes
1. Ask for votes (packet dropped)

2. Compare with local log
3. Vote

33 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Steady State

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

ADO

Raft

AS1
time=2 EmptyS2

time=1 AS3
time=2 B

1. Append to log

34 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Branching

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

ADO

ECache
voters={S1,S2}

ldr=S1
time=3

1. Add ECache

Raft

S1
time=3

S2
time=1

S3
time=2

1. Ask for votes (packet dropped)
1. Ask for votes

2. Compare with local log
3. Vote

A Empty A B

35 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Branching

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

ADO

Raft

AS1
time=3 EmptyS2

time=3 AS3
time=2 B

ECache
voters={S1,S2}

ldr=S1
time=3

C

MCache
method=C

time=3

1. Add MCache

1. Append to log

36 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

ADO API — Branching

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

ADO

ECache
voters={S1,S2}

ldr=S1
time=3

MCache
method=C

time=3

CCache
voters={S1,S2}

time=3

1. Add CCache

Raft

AS1
time=3 AS2

time=3 AS3
time=2

1. Replicate log
1. Replicate log (packet dropped)

3. Acknowledge
2. Update log

C C B

37 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Safety

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

ECache
voters={S1,S2}

ldr=S1
time=3

MCache
method=C

time=3

CCache
voters={S1,S2}

time=3

CCache
voters=?
time=2

Impossible
voters must include S1, S2

38 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Safety

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

ECache
voters={S1,S2}

ldr=S1
time=3

MCache
method=C

time=3

CCache
voters={S1,S2}

time=3

ECache
voters={S1,S2}

ldr=S3
time=4

Election must choose
committed branch

39 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Roadmap

▶ Motivation
▶ ADO Overview
▶ Case Study: Advert

▶ Atomic Distributed Object Verification Toolchain
▶ Expose partial failures for distributed application optimization.
▶ Support ADO composition.

▶ Case Study: Adore
▶ Case Study: AdoB
▶ Conclusions

40 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications with Partial Failures

Partial failure is a central reality of distributed computing. [. . .] Being robust in
the face of partial failure requires some expression at the interface level.
(Jim Waldo. A Note on Distributed Computing. 1994)

▶ Unavoidable feature unique to distributed systems.
▶ Interact with all aspects of distributed protocols (e.g., leader election and

reconfiguration).
▶ Can be used for performance optimizations.

▶ TAPIR (SOSP ’15): Transactions with out-of-order commits.
▶ Speculator (SOSP ’05): Speculative distributed file system.

41 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications with Partial Failures

{
 "abc": "def"
}

{
 "abc": "def"
}

{
 "abc": "def"
}

S1

S2

S3

42 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications with Partial Failures

{
 "abc": "def"
}

{
 "abc": "def",
 "foo": "bar"
}

{
 "abc": "def"
}

Alice

"foo": "bar"

S1

S2

S3

43 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications with Partial Failures

{
 "abc": "def"
}

{
 "abc": "def",
 "foo": "bar"
}

{
 "abc": "def"
}

Bob

Read

S2

S1

S3

44 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications with Partial Failures

{
 "abc": "def",
 "foo": "bar"
}

{
 "abc": "def",
 "foo": "bar"
}

{
 "abc": "def",
 "foo": "bar"
}

Bob

"foo": "bar"

S1

S2

S3

45 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications

1 ADO KV {
2 shared kv : [string * int] := [];
3 method set(k, v) { this.kv[hash(k)] := (v, len(v)); }
4 method get(k) { return this.kv[hash(k)][0]; }
5 method getmeta(k) { return this.kv[hash(k)][1]; }
6 }

46 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications

1 ADO DVec[T] {
2 shared data : [T] := [];
3 method insert(idx, x) { this.data[idx] := x; }
4 method get(idx) { return this.data[idx]; }
5 }
6 ADO DLock {
7 shared owner : option N := None;
8 method tryAcquire() { ... }
9 method release() { ... }

10 }
11 DApp KVLock(lk: DLock, data: DVec[string], meta: DVec[int]) {
12 proc set(k, v) {
13 ... /* acquire, set data, set meta, release */
14 }
15 ... /* get, getmeta */
16 }

47 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications

1 DApp KVLock(lk: DLock, data: DVec[string], meta: DVec[int]) {
2 proc set(k, v) {
3 lk.pull();
4

5

6

7

8 }
9 }

48 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications

1 DApp KVLock(lk: DLock, data: DVec[string], meta: DVec[int]) {
2 proc set(k, v) {
3 while (lk.pull() == FAIL) {}
4

5

6

7

8 }
9 }

49 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications

1 DApp KVLock(lk: DLock, data: DVec[string], meta: DVec[int]) {
2 proc set(k, v) {
3 while (lk.pull() == FAIL) {}
4 ok := lk.invoke(tryAcquire());
5

6

7

8 }
9 }

50 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Distributed Applications

1 DApp KVLock(lk: DLock, data: DVec[string], meta: DVec[int]) {
2 proc set(k, v) {
3 while (lk.pull() == FAIL) {}
4 ok := lk.invoke(tryAcquire());
5 while (lk.push() == FAIL) {}
6 if (!ok) { return; }
7 /* ... */
8 }
9 }

51 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Handling Failures

1 DApp KVLockAbort(lk: DLock, data: DVec[string], meta: DVec[int]) {
2 proc set(k, v) {
3 if (lk.pull() == FAIL) { return; }
4 ok := lk.invoke(tryAcquire());
5 if (lk.push() == FAIL) { return; }
6 if (!ok) { return; }
7 /* ... */
8 }
9 }

52 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Handling Failures

1 DApp KVLockRetry(lk: DLock, data: DVec[string], meta: DVec[int]) {
2 proc set(k, v) {
3 for retry in 0..N {
4 if (lk.pull() == FAIL) { continue; }
5 ok := lk.invoke(tryAcquire());
6 if (lk.push() == FAIL) { continue; }
7 if (!ok) { continue; }
8 }
9 if (retry == N) { return; }

10 /* ... */
11 }
12 }

53 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Handling Failures

1 obj.m()! :=
2 while (obj.pull() == FAIL) {}
3 obj.invoke(m());
4 while (obj.push() == FAIL) {}
5

6 DApp KVLock(lk: DLock, data: DVec[string], meta: DVec[int]) {
7 proc set(k, v) {
8 ok := lk.tryAcquire()!;
9 if (!ok) { return; }

10 data.insert(hash(k), v)!;
11 meta.insert(hash(k), len(v))!;
12 lk.release()!;
13 }
14 }

54 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

End-to-End Verification

ECache
voters={S1,S2}

ldr=S1

MCache
method=A

CCache
voters={S1,S3}

ECache
voters={S1,S3}

ldr=S3

MCache
method=B

ECache
voters={S1,S2}

ldr=S1

MCache
method=C

A CS1 A CS2

S1/S2's current
branch

CCache
voters={S1,S2}

Network-Based

A BS3

ADO

55 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

End-to-End Verification

CommitElect Local
Update

Pull Invoke Push

Refine

56 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

End-to-End Verification

Group

Send
(Elect)

Local
Update

Recv
(Elect)

Send
(Commit)

Recv
(Commit)

Send
(Elect)

Local
Update

Recv
(Elect)

Send
(Commit)

Recv
(Commit)

CommitElect Local
Update

Pull Invoke Push

...
(Elect)

...
(Commit)

...
(Elect)

...
(Commit)

Refine

Commute

57 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

End-to-End Verification

Broadcast Layer

Request Layer

Send Layer

Definition elect (time: nat) : bool :=
 let ok := broadcast(Elect) in ...

int elect(time: int) {
 int ok = broadcast(ELECT); ... }

Definition broadcast (msg: Msg) : bool :=
 fold (send msg) replicas

int broadcast(msg: Msg) {
 for (int i = 0; i < NUM_REPLICAS; i++) {
 send(msg, replicas[i]); } }

...

Coq

Coq

C

C

58 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proof Effort

Proof LOC (Coq)

KVLock DApp ∼600
KVLockFree DApp ∼300

2PC DApp ∼600

Generic Paxos Refinement ∼5k
Chain Replication Refinement ∼2k

Shared Libraries ∼11k
Multi Paxos C Refinement ∼44k

Single Paxos ∼80
Multi Paxos ∼90

Vertical Paxos ∼100
CASPaxos ∼80

59 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Roadmap

▶ Motivation
▶ ADO Overview
▶ Case Study: Advert
▶ Case Study: Adore

▶ Atomic Distributed Objects with Certified Reconfiguration
▶ Prove safety at the ADO level.
▶ Support hot reconfiguration.

▶ Case Study: AdoB
▶ Conclusions

60 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration

S1

S3

S2

A B

A BA B S1

S3

S2

A B

A BA B

S4

+S4

+S4 A B +S4

Hot Reconfiguration

61 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration

Consensus

Reconfiguration

Current
configuration
stored in log

Committed log
entries decided

by current
configuration

62 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration

Raft hot reconfiguration
published

Critical bug
discovered

Fix
proposed

Safety proved
in Adore

August
2014

May
2015

July
2015

June
2021

No complete
safety proofs

Diego Ongaro
(Raft designer)

63 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Safety in Adore

ECache MCache CCache

ECache MCache

ECache MCache CCache

ECache MCache CCache

ECache MCache

ECache MCache CCache

CCache

64 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration in Adore

MCache
method=M

time=t

CCache
voters={...}

time=t

ECache
voters={...}

ldr=ID
time=t

RCache
config={...}

time=t

Created by pull
(election)

Created by push
(commit)

Created by invoke
(local log update)

Created by reconfig
(local log update)

65 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration in Adore

ECache
voters={S1,S2}

ldr=S1

MCache
method=A

CCache
voters={S1,S3}

ECache
voters={S1,S3}

ldr=S3

RCache
config=

{S1,S2,S3,S4}

S3's config is now
{S1,S2,S3,S4}Config is {S1,S2,S3}

AS1
config={S1,S2,S3} Empty A +S4S2

config={S1,S2,S3}
S3

config={S1,S2,S3,S4}

ADO

Raft

66 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

RCache
config=C'Rule 1

Original config = C New config = C'

∀Q ⊆ C. ∀Q' ⊆ C'.
is_quorum(Q) ∧
is_quorum(Q') ⇒

Q ∩ Q' ≠ ∅

RCache
config=C

RCache
config=C'...Rule 2

Must be a CCache
between

ECache RCache
config=C...

Must be a CCache
between

Rule 3

...

67 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters={S1,S2} MCache CCache

voters={S1,S3}

ECache
voters={S1,S3} MCache

ECache
voters={S1,S2}

{S1,S2} ∩ {S1,S3} = {S1}

{S1,S3} ∩ {S1,S2}
= {S1}

{S1,S3} ∩ {S1,S3}
= {S1,S3}

68 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

RCache
config=C'Rule 1

Original config = C New config = C'

∀Q ⊆ C. ∀Q' ⊆ C'.
is_quorum(Q) ∧
is_quorum(Q') ⇒

Q ∩ Q' ≠ ∅

RCache
config=C

RCache
config=C'...Rule 2

Must be a CCache
between

ECache RCache
config=C...

Must be a CCache
between

Rule 3

...

69 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

No Rule 3 leads to a
safety bug

70 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

No Rule 3 leads to a
safety bug

71 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

RCache
config=

{S1,S2,S4}
time=2

No Rule 3 leads to a
safety bug

72 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

{S2,S4} is a quorum of
{S1,S2,S4}

No Rule 3 leads to a
safety bug

73 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

ECache
voters={S1,S3}

ldr=S1
time=3

{S1,S3} is a quorum of
{S1,S2,S3}

No Rule 3 leads to a
safety bug

74 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

ECache
voters={S1,S3}

ldr=S1
time=3

MCache
method=A

time=3

CCache
voters={S1,S3}

time=3

CCaches on different branches
= consistency is broken

No Rule 3 leads to a
safety bug

75 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

MCache
method=A

time=2

CCache
voters=

{S2,S3,S4}
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

Required by Rule 3

Rule 3 prevents the
safety bug

76 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

MCache
method=A

time=2

CCache
voters=

{S2,S3,S4}
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

ECache
voters={S1,S3}

ldr=S1
time=3

Now impossible

S3 voted here already

Rule 3 prevents the
safety bug

77 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

t ≠ t' because ?

Nearest common
CCache ancestor

78 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

t ≠ t' because configs are
equal so Q ∩ Q' ≠ ∅

No RCaches

No RCaches

Nearest common
CCache ancestor

79 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

t ≠ t' because Q ∩ Q' ≠ ∅
by Rule 1

No RCaches

No RCaches

RCache

Nearest common
CCache ancestor

80 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

Impossible by Rule 2

No RCaches

No RCaches

RCache RCache

Nearest common
CCache ancestor

81 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

No RCaches

No RCaches

RCache

RCacheNearest common
CCache ancestor

Impossible by Rule 3

82 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

rdist = 0 + 0 = 0

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

rdist = 0 + 1 = 1

RCache

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

rdist = 0 + 2 = 2

RCache RCache

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

... RCache

RCache

rdist = 1 + 1 = 2

83 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Generalized Quorums

▶ Safety proved once for generic reconfiguration scheme.
▶ A quorum is any set that guarantees overlap.
▶ Can be instantiated many times with minimal proof effort.

SafeAdore(GenReconfig)

SafeAdore(SingleServer) SafeAdore(JointConsensus) SafeAdore(DynamicQuorum) SafeAdore(PrimaryBackup)

84 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Generalized Quorums

Single-Server

Config ≜ Set(Nnid)

canReconfig(C,C′) ≜ C = C′ ∨
∃s.C = C′ ∪ {s} ∨ C′ = C ∪ {s}

isQuorum(S,C) ≜ |C| < 2 ∗ |S ∩ C|

85 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Generalized Quorums

Joint Consensus

Config ≜ Set(Nnid) ∗ Option(Set(Nnid))

canReconfig(C,C′) ≜ ∃ old.
(
C = (old,⊥) ∧ C′ = (old,)

)
∨

∃ new.
(
C = (,new) ∧ C′ = (new,⊥)

)
isQuorum(S, (old,new)) ≜ |old| < 2 ∗ |S ∩ old| ∧

(new = ⊥ ∨ |new| < 2 ∗ |S ∩ new|)

86 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Generalized Quorums

Dynamic Quorum Size

Config ≜ N ∗ Set(Nnid)

canReconfig((q,C), (q′,C′)) ≜ (C ⊆ C′ ∧ |C′| < q + q′) ∨
(C′ ⊆ C ∧ |C| < q + q′)

isQuorum(S, (q,C)) ≜ q ≤ |S ∩ C|

87 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Generalized Quorums

Primary Backup

Config ≜ Nnid ∗ Set(Nnid)

canReconfig((P,), (P′,)) ≜ P = P′

isQuorum(S, (P,)) ≜ P ∈ S

88 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Refinement

▶ Refinement between Raft network-based specification and Adore.
▶ Also generic with respect to reconfiguration scheme.

stAdore st'Adore

stnet st'net

R R

stepAdore

stepnet

∀ stnet ∃ stAdore R(stnet,stAdore)

SafeAdore

Safenet

R

89 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Extraction
▶ Automated extraction from Coq specification to executable OCaml.
▶ Extracted code contains core logic, unverified shim layer handles network

communication.
▶ Safety guaranteed through Adore and refinement.

Adore

Net Spec

R

Executable

Extract

Shim
Layer

90 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proof Effort

Proof LOC (Coq) Proof Time

Cache Tree Library/Properties ∼6k 2 person-weeks
Safety Proof ∼4k 3 person-weeks

Refinement Proof ∼13k 9 person-weeks
Reconfiguration Schemes (6) ∼300 <1 person-week

91 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Roadmap

▶ Motivation
▶ ADO Overview
▶ Case Study: Advert
▶ Case Study: Adore
▶ Case Study: AdoB

▶ Atomic Distributed Objects for Benign/Byzantine Consensus
▶ Prove liveness at the ADO level.
▶ Support benign and byzantine failures in a generic abstraction.

▶ Conclusions

92 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness

S1

S2 S3

elect

electelect

93 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness

S1
timer=0

S2
timer=5

S3
timer=4

elect

94 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness Assumptions

▶ Partial synchrony

▶ Productive strategy
▶ Non-faulty quorum
▶ Fair election rotation

S1
S2
S3

Asynchronous
Messages can be

dropped

Partially Synchronous
Messages always

delivered

95 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness Assumptions

▶ Partial synchrony
▶ Productive strategy

▶ Non-faulty quorum
▶ Fair election rotation

if not isLeader() and timer() == 0:
startElection()

else if isLeader() and hasUncommitted():
startCommit()

else if timer() == 0:
sendTimeout()

96 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness Assumptions

▶ Partial synchrony
▶ Productive strategy
▶ Non-faulty quorum

▶ Fair election rotation

S1

S2

S3

S4
crashed

S5
crashed

Quorum = majority = 3/5

97 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness Assumptions

▶ Partial synchrony
▶ Productive strategy
▶ Non-faulty quorum
▶ Fair election rotation S1 S3 S1 S4 S2S5Leader

Time 1 2 3 4 5 6 ...
...

S1 S2 S3

S4 S5

Non-
Faulty

Faulty

1 1 3 ...
Time between non-faulty

98 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Time in AdoB

MCache
method=M

time=t

CCache
voters={...}

time=t

ECache
voters={...}

ldr=ID
time=t

Created by pull
(election)

Created by push
(commit)

Created by invoke
(local log update)

Created on failure
(timeout)

TCache
voters={...}

time=t

99 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness in AdoB

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

100 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness in AdoB

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

TCache
voters=
{S2,S3}
time=2

push times out

101 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness in AdoB

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

TCache
voters=
{S1,S2}
time=2

TCache
voters=
{S1,S3}
time=3

pull times out

102 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Liveness in AdoB

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

TCache
voters=
{S1,S2}
time=2

TCache
voters=
{S1,S3}
time=3

ECache
voters={S1,S3}

ldr=S1
time=4

pull succeeds

103 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Byzantine Failures

S1
dishonest

S2 S3

commit(B)commit(A)

104 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Byzantine Failures

S1

Quorums
(3/5)

Super Quorums
(4/5)

S2 S3 S4 S5Configuration

DishonestHonest

S1 S3 S5

S2 S4 S5
Always overlap, but
may not be honest

S1 S2 S3 S5

S4 S2 S3
Overlap is always honest

S5

105 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Byzantine Failures

saw
precommit(A)
from S1, S2

S1
honest

S2 S3

precommit(A)
S1

honest

S2 S3

commit(A)

precommit(A)precommit(A)

saw
precommit(A)
from S1, S3

PBFT

106 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Byzantine Failures

precommit(A)
signed by

S2, S3

S1
honest

S2 S3

precommit(A)
S1

honest

S2 S3

commit(A)HotStuff/Jolteon

107 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Byzantine Failures in AdoB

MCache
voters={...}
method=M

time=t

CCache
voters={...}

time=t

ECache
voters={...}

ldr=ID
time=t

Created by pull
(election)

Created by push
(commit)

Created by invoke
(pre-commit)

Created on failure
(timeout)

TCache
voters={...}

time=t

108 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Generalizing Benign and Byzantine Failures

ECache
voters=

{S1,S2,S3}
ldr=S1

MCache
voters=

{S1,S3,S4}
method=A

CCache
voters=

{S1,S2,S4}

common honest = {S1,S3}
common honest = {S1}

honest = {S1,S2,S3}
dishonest = {S4}

109 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Generalizing Benign and Byzantine Failures

ECache
voters=

{S1,S2,S3}
ldr=S1

MCache
voters={S1}
method=A

CCache
voters=

{S1,S2,S4}

common honest = {S1}
common honest = {S1}

honest = {S1,S2,S3,S4}
dishonest = {}

110 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Generalizing Benign and Byzantine Failures

Failure Model Required Number of Votes
pull invoke push

Benign Quorum Only leader Quorum
Byzantine Super Quorum Super Quorum Super Quorum

Generalized Super Quorum MQuorum Super Quorum

Definition
Two quorums have a common voter (e.g., > 1/2 of configuration).
Super quorums have a common honest voter (e.g., > 2/3 of configuration).
An MQuorum and super quorum with the same leader have a common honest
voter.

111 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Refinement

Group

Send
(Elect)

Recv
(Elect)

Elect

Pull

...
(Elect)

Refine

Byz Send
(Elect)

DiscardGroup

Byz Recv
(Elect)

Discard

112 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Proof Effort

Proof LOC (Coq) Proof Time

Safety Proof ∼3k 2 person-weeks
Liveness Proof ∼3k 2 person-weeks

Refinement Proof ∼4k 6 person-weeks

113 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Roadmap

▶ Motivation
▶ ADO Overview
▶ Case Study: Advert
▶ Case Study: Adore
▶ Case Study: AdoB
▶ Conclusions

▶ Summary of results.
▶ Future work.

114 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Summary

It facilitates formal verification by hiding network-level details behind a global
tree-based state representation and atomic interface.
▶ ADO model: novel protocol-level abstraction for consensus.
▶ Atomic tree-based representation of replicated state.
▶ Exposes partial failures to distributed applications (Advert).
▶ Enables safety and liveness reasoning (Adore, AdoB).
▶ Correctly models a wide range of consensus protocols both benign (Advert,

Adore) and byzantine (AdoB).
▶ Supports practical extensions like reconfiguration (Adore).

115 / 116

Motivation ADO Model Advert Adore AdoB Conclusions

Future Work

▶ Automate refinement.
▶ Verdi verified system transformers (PLDI ’15).
▶ CSPEC (OSDI ’18), pretend synchrony (POPL ’19), inductive sequentialization

(PLDI ’20).
▶ Generate code from ADO specification.

▶ DeepSEA (OOPSLA ’19).
▶ Expand beyond consensus.

▶ Conflict-free replicated data types.
▶ Causal consistency.

116 / 116

	Motivation
	ADO Model
	Advert
	Adore
	AdoB
	Conclusions

