Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 0000 o
: :

Adore: Atomic Distributed Objects with Certified
Reconfiguration

Wolf Honoré! Ji-Yong Shin?> Jieung Kim! Zhong Shao!

Yale University

2Northeastern University

PLDI 2022

Overview Distributed System Abstractions
@00 0000

Adore in Theory

00000000

Adore in Practice
0000

Conclusion
O

Why Consensus?

S1

A B|C

S3

S2

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
@00 0000 00000000 0000 O
' '

Why Consensus?

' [s1[a]B]C szABD<}%
[s3[a[B '::>

>
w

Overview Distributed System Abstractions

@00 0000

Adore in Theory

00000000

Adore in Practice
0000

Conclusion
O

Why Consensus?

S1

A B

S2

S3

Overview
000

Distributed System Abstractions

0000

Adore in Theory

00000000 0000

Adore in Practice

Conclusion
o

Why Consensus?

IronFleet: Proving Practical Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapi

cob R. Lorch,

Bryan Pamo, Michael L. Roberts, Srinath Scuy “Brian Zil

Microsoft Research

Abstral
Distribu

o

oy Programming and Proving with

oA

fication

implemd

Tirary o

hatcac
e

ILYA SERGEY, University College London, UK
JAMES R. WILCOX, University of Washinglon, USA

Distributed Protocols Abstract

ZACHARY TATLOCK, University of Washington, USA

14: Incremental Inference of Inductive Invariants for
Verification of Distributed Protocols

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin
Manos Kapritsos, Baris Kasikei, Karem A. Sakallah

University of Michigan

{mah,)

Ak barisk

Abstract

Designing distributed n

which may manifest during production, resulting in loss of
vailability, [14,53,54,

Morten Krogh-Jespersen, Anmin

Verd
Formally Verifying Distributed Systems

JamesR. Wilcox Doug Woos Pavel Panchekha

Zachary Tatlock Xi Wang Michael D. Emst Thomas Anderson

University of Washington, USA
{jrw12, dwoos, pavpan, ztatlock, xi, mernst, tom} @cs.washington.edu

data loss and service outages [10, 42 For cxample, in April 2011
‘malfuncton of failure recovery in Amazon Elastic Compute Cloud

Aneris: A Mechanised Logic for Modular
Reasoning about Distributed Systems

any®*, Marit Edua Ohlenbusch,
Sion Oddershede Gregersen®, and Lars Birkedal®

Aarhus University, Aarbus, Denmark

Abstract. Building network-connected programs and distributed
tems i & powerful way to provide scalability and availability in a digital,
era. However, with great power comes great complexity.

isavery. rh.«]lmgmg iy Ranﬁlv o verston e

systems. At the heart of formal verification lics a computer-
checked proof with an inductive invariant. Finding this in-
ductive invariant, however, is the most difficult part of the
‘proof. Alas, current proof techniques require inductive in-
variants to be found manually—and painstakingly—by the
developer.

In this paper, we present a new approach, Incremental In-
Gorence of Inductive Inuariants () to antomatically senerate

This has led many researchers and companies to look for

guarantees.
Thankiully, the increasing need for availability has been

Over the last decad

of complex systems software [9, 10,30, 31, 38, 44, 45]
Unfortunately. existing approaches to formally verify-
ing, complex systems have a major scalabilty bottlencck

Reasoning about distributed systems is well-known to be difficult

de
wnochanized In the Coq proof
assistant. We use our framework to verily an implementation of a load
balancer that uses multi-threading to distribute load amongst multiple

vers and an implementation of the two-phase-commit protocol with
a replicated logging service as a client. The two examples cerify that
Aneris is well-suited for both horizontal and vertical modular reasoning.

: A Framework for Implementing and

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
[eL 2] 0000 00000000 0000 o

Why Reconfiguration?

Hot Reconfiguration

__

Overview Distributed System Abstractions
000 0000

Adore in Theory
00000000

Adore in Practice
0000

Conclusion
o

Why Reconfiguration?

Committed log
entries decided
by current
configuration

Consensus

(

~N

Reconfiguration

.

J

Current
configuration
stored in log

Overview Distributed System Abstractions Adore in Theory Adore in Practice

Conclusion
00 0000 00000000 0000 o

Why Reconfiguration?

bug in single-server membership changes Subscribe[] &

4784 views

. onga...@gmail.com Jul 10, 2015, 12:58:53 AM Y -,

to raft...@googlegroups.com

. Hi raft-dev,
Diego Ongaro frafbdey

(Raft designer) Unfortunately, | need to announce a bug in the dissertation version of membership
changes (the single-server changes, not joint consensus). The bug is potentially
severe, but the fix I'm proposing is easy to implement.

., .

Raft hot reconfiguration Critical bug " Fix No complete Safety proved
published discovered proposed safety proofs in Adore
August May July June

2014 2015 2015 2021

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
ocoe 0000 00000000 0000 o

Contributions

» Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
ocoe 0000 00000000 0000 o
: :

Contributions

» Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

» Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
ooe 0000 00000000 0000 o
: :

Contributions

» Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

» Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

» Several practical instantiations of Adore’s generic reconfiguration.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
ooe 0000 00000000 0000 o
: :

Contributions

» Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

» Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

» Several practical instantiations of Adore’s generic reconfiguration.
» Coq proof that Raft refines Adore.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
ooe 0000 00000000 0000 o
: :

Contributions

» Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

» Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

» Several practical instantiations of Adore’s generic reconfiguration.

v

Coq proof that Raft refines Adore.
» Automated extraction from the Coq Raft specification to executable OCaml.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 ©000 00000000 0000 o
' '

Network-Based Abstractions

- Individual servers i One packet
i with local logs dropped
§S1 /A B C S1 /A B|C S$1 |A B C

C uncommitted :S1 and S2 disagree . D committed

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0800 00000000 0000 o
' '

State Machine Replication (SMR)

: Log grows_,
atomically”

Uncommitted
commands hidden

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 0000 o
' '

Atomic Distributed Object (ADO)

éSingIetree

. __pcl: el i E
INE D2 »i[a]B D2 _»[a[B[D]:
i 'proposed! committéd 0

{ Trunk committed Steps are atomic, no'g
iBranches uncommitted; | network i

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0008 00000000 0000 o
' '

The Best of Both Worlds

Network-Based Models

v" Exposes enough detail for protocol-level reasoning.

x Mixes implementation and protocol-level logic.
SMR/ADO

v Atomic object model is more convenient.

x Loses too many important details.
Adore

V" Atomic object model hides network-level communication.

v" Retains enough information about local state for safety reasoning.

Overview
000

Distributed System Abstractions

0000

Adore in Theory
00000000

Conclusion
o

Adore State

{ Created by pull

(prepare/election)

ECreated by push
i (accept/commit) i

ECache
voters={...}
Idr=ID

time=t

CCache
voters={...}
time=t

gCreated by invoke :
i (local log update)

:Created by reconfig
(local log update)

MCache
method=M

time=t

/ RCache *
1 config={...}

s time=t [

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0®000000 0000 o
Adore API — Pull

Adore

i Config is {$1,82,83} !
Raft
3. Vote
() 2. Compare with local log
S$1 S2 S3
time=0 Sy time=0 ey time=0 SRy
1. Ask for votes f
1. Ask for votes (packet dropped)

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0O@000000 0000 o

Adore API — Pull

Adore

| Configis {81,52,83} |

1. Add ECache

ECache
voters={81,52}
Idr=81
time=1

Raft

S1 S2 S3

time=1 Sy time=1 Sy time=0 SRy

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00@00000 0000 o

Adore API — Invoke

Adore

| Configis {81,52,83} |

ECache
voters={81,52}
Idr=81
time=1

Raft

1. Append to log

S$1 S2 Empt S3
time=1 time=1 Pty time=0

Empty

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00@00000 0000 o

Adore API — Invoke

Adore

| Configis {81,52,83} |

1. Add MCache

ECache

- MCache
voters—_{S1 .52} method=A
Idr=81 ——
time=1 =
Raft
S$1 S2 S3
time=1 time=1 Sy time=0 SRy

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0O00®0000 0000 o
Adore API — Push

Adore

| Configis {81,52,83} |

ECache

~ MCache
voters—_{S1 .52} method=A
Idr=81 :
time=1

time=1

Raft
3. Acknowledge

¢

S$1 S2
time=1 time=1

t 1. Replicate log (packet dropped) j<

Empty

\ 2. Update log

S3
time=1

1. Replicate log j

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0O00®0000 0000 o

Adore API — Push

Adore

| Configis {81,52,83} |

1. Add CCache

vot:rgj{cshleSZ) MCache CCache
Idr=s1 ’ method=A —»jvoters={S1,S3
time=1 time=1 time=1
Raft
S1 S2 S3

Empty

time=1 time=1 time=1

Distributed System Abstractions
0000

Adore in Theory Adore in Practice
00008000 0000

Conclusion
o

Adore API — Steady State

Adore

| Configis {81,52,83} |

ECache
voters={81,52}
Idr=81

MCache

method=A —»voters={S1,S3}

ECache
voters={S1,S3}
Idr=83

CCache

time=1 time=1 time=1 time=2
Raft
3. Vote
(2. Compare with local log)
S1 S2 Emot S3
time=1 time=1 Pty time=2

t 1. Ask for votes

% 1. Ask for votes (packet dropped) J

Overview

Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0000@000 0000 o
Adore API — Steady State

Adore

| Configis {81,52,83} |

ECache ECache
= MCache CCache _ MCache
votelrzr—jg;l,SZ} method=A —»ioters={S1,S3) vote:'gr:(S;,SS} method=B
time=1 time=1 time=1 time=2 time=2
Raft
1. Append to log
SS s2 s3
time=2 time=1 Sy time=2 E

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000800 0000 o
Adore API — Branching
Adore
: Config is {$1,52,83} :
: ECache MCache
method=B
time=2
ECache
voters={S1,52} MCach_e CC_ache
1dr=S1 method=A —»voters={S1,S3} . /eI B
time=1 time=1 time=1 . Bcle
ECache
voters={81,S2}
Idr=81
time=3
Raft
3. Vote
{ \ 2. Compare with local log
S$1 S2 S3
time=3 time=1 Sy time=2 =
1. Ask for votes f
1. Ask for votes (packet dropped)

Overview Distributed System Abstractions
000 0000

Adore in Theory
00000800

Adore in Practice
0000

Conclusion
o

Adore API — Branching

Adore

| Configis {81,52,83} |

ECache

time=1

ECache

- MCache CCache
WEEERESTY method=A | —»oters={S1,53}
Idr=81 X .
time=1 time=1

ECache

voters={81,S2}
Idr=81
time=3

1.

method=B

method=C

MCache

time=2

Add MCache

MCache

time=3

Raft

1. Append to log

S1

time=3 C

S2
time=3

Empty

S3
time=2

Overview

Distributed System Abstractions
000 0000

Adore in Theory Adore in Practice
00000800 0000

Conclusion
o

Adore API — Branching

Adore

| Configis {81,52,83} |

ECache
voters={81,52}
Idr=81
time=1

ECache

MCache
method=B
time=2

MCache CCache
method=A —»voters={S1,S3}

time=1 time=1 1. Add CCache

ECache

-~ MCache CCache
voters—_{S1 52} method=C voters={S1,S2
Idr=81 S :
time=3 time=3

time=3

Raft

3. Acknowledge

S$1
time=3

\ 2. Update log

S2 S3
C time=3 2 © time=2 R =

1. Replicate log

} 1. Replicate log (packet dropped)j<

Overview Distributed System Abstractions
000 0000

Adore in Theory Adore in Practice
00000080 0000

Conclusion
o

Reconfiguration in Adore

Config is {$1,82,83} |

ECache

time=1

_ MCache CCache
voters-_{S1 -S2} method=A —>»jvoters={S1,S3}|
Idr=81 X :
time=1 time=1

S1
config={S1,52,S3}

3's config is now

/"RCache °
config=

{51,52,83,84)/

o time=2

2 Empt
config={s1,52,83}| ~"°Y

S3

config={S1,52,53,54} +S4

Overview Distributed System Abstractions Adore in Theory Adore in Practice

Conclusion
000 0000 0000000e 0000 [©]

Reconfiguration Rules

Original config = C New config = C'
vQecC.vQ cC.
RCache is_quorum(Q) A
Rule 1 —> config=C' is_quorum(Q') =

QNQ'#9

Rule 2. RCache ’ RCache
config=C . config=C"

i Must be a CCache !
: between ;

Rule 3 ECache —» RCache
config=C

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0000000e 0000 o
: :

Reconfiguration Rules

181,837 (81,83

..2i8183)
‘ ~
; L\
- Y
‘E‘{S1,SZ} N {S$1,83} {S1}:E \ ECache
, \ “ voters={S1,S3}
ECache MCache > CCache

voters={S1,52} lvoters={S1,S3}|

ECache
’ voters={S$1,S2}

4

Overview Distributed System Abstractions Adore in Theory Adore in Practice

Conclusion
000 0000 0000000e 0000 [©]

Reconfiguration Rules

Original config = C New config = C'
vQecC.vQ cC.
RCache is_quorum(Q) A
Rule 1 —> config=C' is_quorum(Q') =

QNQ'#9

Rule 2. RCache ’ RCache
config=C . config=C"

i Must be a CCache !
: between ;

Rule 3 ECache —» RCache
config=C

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0000000e 0000 o

Reconfiguration Rules

Original config = { NoRule3leadstoa
{S1,52,53,54} safety bug

ECache

voters= T
- config=
$1,52,S3
{ et } (51,52,53}
time=1

time=1

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0000000e 0000 o

Reconfiguration Rules

Original config = { NoRule3leadstoa
{S1,52,53,54} safety bug

ECache

voters= iE L)
- config=
$1,82,S3
{ fore } {81,52,53}
time=1

time=1

ECache
voters=
{82,S3,54}
Idr=S82
time=2

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0000000e 0000 o

Reconfiguration Rules

No Rule 3 leads to a
safety bug

Original config =
{81,52,S3,54}

ECache

voters= e
- config=
$1,82,S3
{ fore } {81,52,53}
time=1

time=1

I\E,g;::f ’ ,RCache \\
- ! config=
{82,S3,54} 1
e | {s1.5284) |

« time=2 ,
~ ’

L

time=2

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0000000e 0000 o

Reconfiguration Rules

Original config = { NoRule3leadstoa
{S1,52,53,54} safety bug

ECache

voters= e
- config=
$1,82,S3
{ fore } {81,52,53}
time=1

time=1

ECache RCache

voters= ol CCache | {82,847 a quorum of
(52,53,54) ; sqy —froters=(s284y

Idr=S2 ‘33;33;3‘” y time=2 21,22,

time=2 T

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0000000e 0000 o

Reconfiguration Rules

Original config = { NoRule3leadstoa
{S1,52,53,54} safety bug
I\E,g:;::: RCache .)
(51,52,53} config= i {81,83}is a quorum of !
fore {1,52,83} 5 {51,52,83} 5
time=1 (s=t
ECache)
voters= ! I?:g:f(i:;: CCache
{32,3;3,54) :‘\ (51.52,54) ”—>v0ter.s={§2,s4}
Idr=82 Y time=2
time=2 \\tlme—Z

Overview
000

Distributed System Abstractions
0000

Adore in Theory
00000008

Adore in Practice

Conclusion
0000 o

Reconfiguration Rules

Original config =
{81,52,S3,54}

No Rule 3 leads to a
safety bug

ECache

voters= e
- config=
$1,82,S3
{ fore } {81,52,53}
time=1

time=1

ECache

voters= / RCache
¢ config= |

$2,S3,54 |
{ ey } | {s1,52,54} |

time=2 \\\|me=2/,'

—>»voters={S2,54}

method=A
time=3

CCache
voters={S1,S3
time=3

CCache

time=2

ECCaches on different branches%
i = consistency is broken

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000008 0000 o
Reconfiguration Rules
Original config = Rule 3 prevents the
{81,52,S3,54} safety bug
ECach_e RCache
voters= config=
{81,52,83}
dr=81 {51,52,83}
ST time=1
time=1
Required by Rule 3
ECache
voters= MCache (\:/oct:sh: ig:f?h: CCache
(52,53,54) method=A > O >loters={S2,54}
— L {82,S3,54} . {81,52,84} ,
Idr=82 time=2) L " time=2
time=2 time=2 time=2 .

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000008 0000 o
Reconfiguration Rules
Original config = Rule 3 prevents the
{81,52,S3,54} safety bug
-0 oo o
Eg:;::_e RCache ECache ‘
- config= voters={S1,83} V
{51’512'33} {81,82,83} > dr=81 ¢:.
Idr=81 Ty L i
i time=1 time=3 ¢
time=1 g ——— .
= T T 7| s3voted here already :
ECache N
voters= MCache (\:/oct:?shf %g:f?;_e CCache
{S2,83,54} method=A R aq —>oters={S2,54}
Idr=S2 time=2 {St"i’r’nsig“} \ (81,5284} ; time=2

time=2

s time=2

Overview Distributed System Abstractions

000 0000

Adore in Theory Adore in Practice
00000000 ©000

Conclusion
o

Proving Safety

"Nearest common

CCache

L.

ECache
voters=Q
time=t

t # t' because ?

ECache
voters=Q'
time=t'

Overview
000

Distributed System Abstractions

0000

Adore in Theory Adore in Practice
00000000 ©000

Conclusion
o

Proving Safety

{"Nearest common

.G

Cache ancestor

No RCaches

CCache

ECache
voters=Q
time=t

{t#t because configs are !

equalsoQNQ # @

ECache
voters=Q'
time=t'

No RCaches

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 €000 o
: :

Proving Safety

ECache
voters=Q
time=t

earest common

CCache {t#t because QN Q' #0!
{ by Rule 1

\—> —>» RCache

ECache
voters=Q'
time=t'

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 €000 o

Proving Safety

No RCaches

{"Nearest common
: CCache ancestor :

ECache
voters=Q
time=t

CCache Impossible by Rule 2

ECache
—>» RCache ——>» RCache ; voters=Q'
4 time=t'

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 €000 o

Proving Safety

ECache
voters=Q
time=t

{"Nearest common
: CCache ancestor :

CCache Impossible by Rule 3

\—> —>» RCache

ECache
voters=Q'
time=t'

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 €000 o

Proving Safety

[—>

CCache

L.

e

CCache

rdist=0+0=0

ECache
voters=Q'
time=t'

ECache
voters=Q'
time=t'

ECache
voters=Q

ECache
voters=Q
time=t

CCache CCache

ECache
voters=Q'
time=t'

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 0000 o
:

Generalized Quorums

» Safety proved once for generic reconfiguration scheme.
» Can be instantiated many times with minimal proof effort.

» Details in Section 6 of the paper.

Safepqore(GenReconfig) ’

// N~

‘ Safeagore(SingleServer) ‘ FafeAdore(JmntConsensus)

Safepagore(DynamicQuorum) ‘ Safepgore(PrimaryBackup) ‘

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 0000 o
: :

Refinement

» Refinement between Raft network-based specification and Adore.
» Also generic with respect to reconfiguration scheme.

» Details in Section 5 of the paper.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 000e o
: :

Extraction

» Automated extraction from Coq specification to executable OCaml.
» Safety guaranteed through Adore and refinement.

» Evaluation in Section 7 of the paper.

OCaml

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 0000 °
: :

Conclusion

» Adore: A novel protocol-level abstraction for consensus.
» First safety proof for consensus with generic hot reconfiguration schemes.

» Refinement with network-level specification and extraction to executable.

0

Proof Effort

Language Proof LOC Proof Time
Adore
Reusable Library ~6k 2 person-weeks
Safety Proof Coq ~4k 3 person-weeks
Total ~10k 5 person-weeks
MongoRaftReconfig! TLA* ~3k 5-6 person-months

'William Schultz, Ian Dardik, and Stavros Tripakis. 2022. Formal Verification of a Distributed

Dynamic Reconfiguration Protocol. CPP "22

oe

Generalized Quorums

T R

\4
Original Config
Quorum size: 2 {31 S2 33}
Final Config 5
Quorum size: ? {}

A is_quorum() =
{sEEN{E) # ¢

Original-final overlap

oe

Generalized Quorums

Original Confi

Soatom sen2 {51 s2[53[s4]}
Final Confi

uorom cn 1 518259}

{572} 2] - (=)

Original-final overlap

Generalized Quorums

Original Confi
SenialemE) @}n{{} e
(fossis)
Joint Config o }
Quorum size: (2,3) {81 EEEE Original-joint overlap

v St safsafssfssl} {st OEJ = {s3l}

Final-joint overlap

oe

Generalized Quorums

Original Confi
oo soa 3 | s1/52[59]}
Final Confi
oo oo 31 S152I54[S5Tse |

{/5Es]} (s - {1

Original-final overlap

	Overview
	Distributed System Abstractions
	Adore in Theory
	Adore in Practice
	Conclusion
	Appendix

