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Designing distributed n

which may manifest during production, resulting in loss of
vailability, [14,53,54,
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data loss and service outages [10, 42 For cxample, in April 2011
‘malfuncton of failure recovery in Amazon Elastic Compute Cloud

Aneris: A Mechanised Logic for Modular
Reasoning about Distributed Systems

any®*, Marit Edua Ohlenbusch,
Sion Oddershede Gregersen®, and Lars Birkedal®

Aarhus University, Aarbus, Denmark

Abstract. Building network-connected programs and distributed
tems i & powerful way to provide scalability and availability in a digital,
era. However, with great power comes great complexity.

isavery. rh.«]lmgmg iy Ranﬁlv o verston e

systems. At the heart of formal verification lics a computer-
checked proof with an inductive invariant. Finding this in-
ductive invariant, however, is the most difficult part of the
‘proof. Alas, current proof techniques require inductive in-
variants to be found manually—and painstakingly—by the
developer.

In this paper, we present a new approach, Incremental In-
Gorence of Inductive Inuariants () to antomatically senerate

This has led many researchers and companies to look for

guarantees.
Thankiully, the increasing need for availability has been

Over the last decad

of complex systems software [9, 10,30, 31, 38, 44, 45]
Unfortunately. existing approaches to formally verify-
ing, complex systems have a major scalabilty bottlencck

Reasoning about distributed systems is well-known to be difficult

de
wnochanized In the Coq proof
assistant. We use our framework to verily an implementation of a load
balancer that uses multi-threading to distribute load amongst multiple

vers and an implementation of the two-phase-commit protocol with
a replicated logging service as a client. The two examples cerify that
Aneris is well-suited for both horizontal and vertical modular reasoning.

: A Framework for Implementing and
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Why Reconfiguration?

bug in single-server membership changes Subscribe[] &

4784 views

. onga...@gmail.com Jul 10, 2015, 12:58:53 AM Y -,

to raft...@googlegroups.com

. Hi raft-dev,
Diego Ongaro frafbdey

(Raft designer) Unfortunately, | need to announce a bug in the dissertation version of membership
changes (the single-server changes, not joint consensus). The bug is potentially
severe, but the fix I'm proposing is easy to implement.

., .

Raft hot reconfiguration  Critical bug " Fix No complete Safety proved
published discovered proposed safety proofs in Adore
August May July June

2014 2015 2015 2021
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Contributions

» Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.
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» Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.
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Contributions

» Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

» Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

» Several practical instantiations of Adore’s generic reconfiguration.

v

Coq proof that Raft refines Adore.
» Automated extraction from the Coq Raft specification to executable OCaml.
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Network-Based Abstractions

- Individual servers i One packet
i with local logs dropped
§S1 /A B C S1 /A B|C S$1 |A B C

C uncommitted :S1 and S2 disagree . D committed
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State Machine Replication (SMR)

: Log grows_,
atomically”

Uncommitted
commands hidden
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Atomic Distributed Object (ADO)

éSingIetree

. __pcl: el i E
INE D2 »i[a]B D2 _»[a[B[D]:
i 'proposed! committéd 0

{  Trunk committed Steps are atomic, no'g
iBranches uncommitted; | network i
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The Best of Both Worlds

Network-Based Models

v" Exposes enough detail for protocol-level reasoning.

x Mixes implementation and protocol-level logic.
SMR/ADO

v Atomic object model is more convenient.

x Loses too many important details.
Adore

V" Atomic object model hides network-level communication.

v" Retains enough information about local state for safety reasoning.
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Adore State

{ Created by pull

(prepare/election)

ECreated by push
i (accept/commit) i

ECache
voters={...}
Idr=ID

time=t

CCache
voters={...}
time=t

gCreated by invoke :
i (local log update)

:Created by reconfig
(local log update)

MCache
method=M

time=t

/ RCache *
1 config={...}

s time=t [
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Adore API — Pull

Adore

i Config is {$1,82,83} !
Raft
3. Vote
( ) 2. Compare with local log
S$1 S2 S3
time=0 Sy time=0 ey time=0 SRy
1. Ask for votes f
1. Ask for votes (packet dropped)
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Adore API — Pull

Adore

| Configis {81,52,83} |

1. Add ECache

ECache
voters={81,52}
Idr=81
time=1

Raft

S1 S2 S3

time=1 Sy time=1 Sy time=0 SRy
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Adore API — Invoke

Adore

| Configis {81,52,83} |

ECache
voters={81,52}
Idr=81
time=1

Raft

1. Append to log

S$1 S2 Empt S3
time=1 time=1 Pty time=0

Empty
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Adore API — Invoke

Adore

| Configis {81,52,83} |

1. Add MCache

ECache

- MCache
voters—_{S1 .52} method=A
Idr=81 ——
time=1 =
Raft
S$1 S2 S3
time=1 time=1 Sy time=0 SRy
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Adore API — Push

Adore

| Configis {81,52,83} |

ECache

~ MCache
voters—_{S1 .52} method=A
Idr=81 :
time=1

time=1

Raft
3. Acknowledge

¢

S$1 S2
time=1 time=1

t 1. Replicate log (packet dropped) j<

Empty

\ 2. Update log

S3
time=1

1. Replicate log j
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Adore API — Push

Adore

| Configis {81,52,83} |

1. Add CCache

vot:rgj{cshleSZ) MCache CCache
Idr=s1 ’ method=A —»jvoters={S1,S3
time=1 time=1 time=1
Raft
S1 S2 S3

Empty

time=1 time=1 time=1
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Adore API — Steady State

Adore

| Configis {81,52,83} |

ECache
voters={81,52}
Idr=81

MCache

method=A —»voters={S1,S3}

ECache
voters={S1,S3}
Idr=83

CCache

time=1 time=1 time=1 time=2
Raft
3. Vote
( 2. Compare with local log )
S1 S2 Emot S3
time=1 time=1 Pty time=2

t 1. Ask for votes

% 1. Ask for votes (packet dropped) J
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Adore API — Steady State

Adore

| Configis {81,52,83} |

ECache ECache
= MCache CCache _ MCache
votelrzr—jg;l,SZ} method=A —»ioters={S1,S3) vote:'gr:(S;,SS} method=B
time=1 time=1 time=1 time=2 time=2
Raft
1. Append to log
SS s2 s3
time=2 time=1 Sy time=2 E
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Adore API — Branching
Adore
: Config is {$1,52,83} :
: ECache MCache
method=B
time=2
ECache
voters={S1,52} MCach_e CC_ache
1dr=S1 method=A —»voters={S1,S3} . /eI B
time=1 time=1 time=1 . Bcle
ECache
voters={81,S2}
Idr=81
time=3
Raft
3. Vote
{ \ 2. Compare with local log
S$1 S2 S3
time=3 time=1 Sy time=2 =
1. Ask for votes f
1. Ask for votes (packet dropped)
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Adore API — Branching

Adore

| Configis {81,52,83} |

ECache

time=1

ECache

- MCache CCache
WEEERESTY method=A | —»oters={S1,53}
Idr=81 X .
time=1 time=1

ECache

voters={81,S2}
Idr=81
time=3

1.

method=B

method=C

MCache

time=2

Add MCache

MCache

time=3

Raft

1. Append to log

S1

time=3 C

S2
time=3

Empty

S3
time=2
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Adore API — Branching

Adore

| Configis {81,52,83} |

ECache
voters={81,52}
Idr=81
time=1

ECache

MCache
method=B
time=2

MCache CCache
method=A —»voters={S1,S3}

time=1 time=1 1. Add CCache

ECache

-~ MCache CCache
voters—_{S1 52} method=C voters={S1,S2
Idr=81 S :
time=3 time=3

time=3

Raft

3. Acknowledge

S$1
time=3

\ 2. Update log

S2 S3
C time=3 2 © time=2 R =

1. Replicate log

} 1. Replicate log (packet dropped)j<
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Reconfiguration in Adore

Config is {$1,82,83} |

ECache

time=1

_ MCache CCache
voters-_{S1 -S2} method=A —>»jvoters={S1,S3}|
Idr=81 X :
time=1 time=1

S1
config={S1,52,S3}

3's config is now

/"RCache °
config=

{51,52,83,84)/

o time=2

2 Empt
config={s1,52,83}| ~"°Y

S3

config={S1,52,53,54} +S4
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Reconfiguration Rules

Original config = C New config = C'
vQecC.vQ cC.
RCache is_quorum(Q) A
Rule 1 —> config=C' is_quorum(Q') =

QNQ'#9

Rule 2. RCache ’ RCache
config=C . config=C"

i Must be a CCache !
: between ;

Rule 3 ECache —» RCache
config=C
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Reconfiguration Rules

181,837 (81,83

..2i8183)
‘ ~
; L\
- Y
‘E‘{S1,SZ} N {S$1,83} {S1}:E \ ECache
, \ “ voters={S1,S3}
ECache MCache > CCache

voters={S1,52} lvoters={S1,S3}|

ECache
’ voters={S$1,S2}

4




Overview Distributed System Abstractions Adore in Theory Adore in Practice

Conclusion
000 0000 0000000e 0000 [©]

Reconfiguration Rules

Original config = C New config = C'
vQecC.vQ cC.
RCache is_quorum(Q) A
Rule 1 —> config=C' is_quorum(Q') =

QNQ'#9

Rule 2. RCache ’ RCache
config=C . config=C"

i Must be a CCache !
: between ;

Rule 3 ECache —» RCache
config=C
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Reconfiguration Rules

Original config = { NoRule3leadstoa
{S1,52,53,54} safety bug

ECache

voters= T
- config=
$1,52,S3
{ et } (51,52,53}
time=1

time=1



Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 0000000e 0000 o

Reconfiguration Rules

Original config = { NoRule3leadstoa
{S1,52,53,54} safety bug

ECache

voters= iE L)
- config=
$1,82,S3
{ fore } {81,52,53}
time=1

time=1

ECache
voters=
{82,S3,54}
Idr=S82
time=2
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Reconfiguration Rules

No Rule 3 leads to a
safety bug

Original config =
{81,52,S3,54}

ECache

voters= e
- config=
$1,82,S3
{ fore } {81,52,53}
time=1

time=1

I\E,g;::f ’ ,RCache \\
- ! config=
{82,S3,54} 1
e | {s1.5284) |

« time=2 ,
~ ’

L

time=2
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Reconfiguration Rules

Original config = { NoRule3leadstoa
{S1,52,53,54} safety bug

ECache

voters= e
- config=
$1,82,S3
{ fore } {81,52,53}
time=1

time=1

ECache RCache

voters= ol CCache | {82,847 a quorum of
(52,53,54) ; sqy —froters=(s284y

Idr=S2 ‘33;33;3‘” y time=2 21,22,

time=2 T
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Reconfiguration Rules

Original config = { NoRule3leadstoa
{S1,52,53,54} safety bug
I\E,g:;::: RCache . )
(51,52,53} config= i {81,83}is a quorum of !
fore {1,52,83} 5 {51,52,83} 5
time=1 (s=t
ECache )
voters= ! I?:g:f(i:;: CCache
{32,3;3,54) :‘\ (51.52,54) ”—>v0ter.s={§2,s4}
Idr=82 Y time=2
time=2 \\tlme—Z
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Reconfiguration Rules

Original config =
{81,52,S3,54}

No Rule 3 leads to a
safety bug

ECache

voters= e
- config=
$1,82,S3
{ fore } {81,52,53}
time=1

time=1

ECache

voters= / RCache
¢ config= |

$2,S3,54 |
{ ey } | {s1,52,54} |

time=2 \\\|me=2/,'

—>»voters={S2,54}

method=A
time=3

CCache
voters={S1,S3
time=3

CCache

time=2

ECCaches on different branches%
i = consistency is broken
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Reconfiguration Rules
Original config = Rule 3 prevents the
{81,52,S3,54} safety bug
ECach_e RCache
voters= config=
{81,52,83}
dr=81 {51,52,83}
ST time=1
time=1
Required by Rule 3
ECache
voters= MCache (\:/oct:sh: ig:f?h: CCache
(52,53,54) method=A > O >loters={S2,54}
— L {82,S3,54} . {81,52,84} ,
Idr=82 time=2 ) L " time=2
time=2 time=2 time=2 .
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Reconfiguration Rules
Original config = Rule 3 prevents the
{81,52,S3,54} safety bug
-0 oo o
Eg:;::_e RCache ECache ‘
- config= voters={S1,83} V
{51’512'33} {81,82,83} > dr=81  ¢:.
Idr=81 Ty L i
i time=1 time=3 ¢
time=1 g ——— .
= T T 7| s3voted here already :
ECache N
voters= MCache (\:/oct:?shf %g:f?;_e CCache
{S2,83,54} method=A R aq —>oters={S2,54}
Idr=S2 time=2 {St"i’r’nsig“} \ (81,5284} ; time=2

time=2

s time=2
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Proving Safety

"Nearest common

CCache

L.

ECache
voters=Q
time=t

t # t' because ?

ECache
voters=Q'
time=t'
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Proving Safety

{"Nearest common

.G

Cache ancestor

No RCaches

CCache

ECache
voters=Q
time=t

{t#t because configs are !

equalsoQNQ # @

ECache
voters=Q'
time=t'

No RCaches
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Proving Safety

ECache
voters=Q
time=t

earest common

CCache {t#t because QN Q' #0!
{ by Rule 1

\—> —>» RCache

ECache
voters=Q'
time=t'




Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion
000 0000 00000000 €000 o

Proving Safety

No RCaches

{"Nearest common
: CCache ancestor :

ECache
voters=Q
time=t

CCache Impossible by Rule 2

ECache
—>» RCache ——>» RCache ; voters=Q'
4 time=t'
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Proving Safety

ECache
voters=Q
time=t

{"Nearest common
: CCache ancestor :

CCache Impossible by Rule 3

\—> —>» RCache

ECache
voters=Q'
time=t'
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Proving Safety

[—>

CCache

L.

e

CCache

rdist=0+0=0

ECache
voters=Q'
time=t'

ECache
voters=Q'
time=t'

ECache
voters=Q

ECache
voters=Q
time=t

CCache CCache

ECache
voters=Q'
time=t'
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Generalized Quorums

» Safety proved once for generic reconfiguration scheme.
» Can be instantiated many times with minimal proof effort.

» Details in Section 6 of the paper.

Safepqore(GenReconfig) ’

// N~

‘ Safeagore(SingleServer) ‘ FafeAdore(JmntConsensus)

Safepagore(DynamicQuorum) ‘ Safepgore(PrimaryBackup) ‘
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Refinement

» Refinement between Raft network-based specification and Adore.
» Also generic with respect to reconfiguration scheme.

» Details in Section 5 of the paper.
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Extraction

» Automated extraction from Coq specification to executable OCaml.
» Safety guaranteed through Adore and refinement.

» Evaluation in Section 7 of the paper.

OCaml
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Conclusion

» Adore: A novel protocol-level abstraction for consensus.
» First safety proof for consensus with generic hot reconfiguration schemes.

» Refinement with network-level specification and extraction to executable.
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Proof Effort

Language Proof LOC Proof Time
Adore
Reusable Library ~6k 2 person-weeks
Safety Proof Coq ~4k 3 person-weeks
Total ~10k 5 person-weeks
MongoRaftReconfig! TLA* ~3k 5-6 person-months

'William Schultz, Ian Dardik, and Stavros Tripakis. 2022. Formal Verification of a Distributed

Dynamic Reconfiguration Protocol. CPP "22
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Generalized Quorums

T R

\4
Original Config
Quorum size: 2 {31 S2 33}
Final Config 5
Quorum size: ? {}

A is_quorum() =
{sEEN{E) # ¢

Original-final overlap
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Generalized Quorums

Original Confi

Soatom sen2 {51 s2[53[s4]}
Final Confi

uorom cn 1 518259}

{572} 2] - (=)

Original-final overlap
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Original Confi
SenialemE) @}n{{} e
(fossis)
Joint Config o }
Quorum size: (2,3) {81 EEEE Original-joint overlap

v St safsafssfssl}  {st OEJ = {s3l}

Final-joint overlap
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Generalized Quorums

Original Confi
oo soa 3 | s1/52[59]}
Final Confi
oo oo 31 S152I54[S5Tse |

{/5Es]} (s - {1

Original-final overlap
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