
Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore: Atomic Distributed Objects with Certified
Reconfiguration

Wolf Honoré1 Ji-Yong Shin2 Jieung Kim1 Zhong Shao1

1Yale University

2Northeastern University

PLDI 2022

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Why Consensus?

S1

S3

S2

A B

A BA B C D

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Why Consensus?

S1

S3

S2

A B

A BA B C
Read

A B

D

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Why Consensus?

S1

S3

S2

A B

A BA B C D

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Why Consensus?

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Why Reconfiguration?

S1

S3

S2

A B

A BA B S1

S3

S2

A B

A BA B

S4

+S4

+S4 A B +S4

Hot Reconfiguration

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Why Reconfiguration?

Consensus

Reconfiguration

Current
configuration
stored in log

Committed log
entries decided

by current
configuration

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Why Reconfiguration?

Raft hot reconfiguration
published

Critical bug
discovered

Fix
proposed

Safety proved
in Adore

August
2014

May
2015

July
2015

June
2021

No complete
safety proofs

Diego Ongaro
(Raft designer)

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Contributions

▶ Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

▶ Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

▶ Several practical instantiations of Adore’s generic reconfiguration.
▶ Coq proof that Raft refines Adore.
▶ Automated extraction from the Coq Raft specification to executable OCaml.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Contributions

▶ Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

▶ Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

▶ Several practical instantiations of Adore’s generic reconfiguration.
▶ Coq proof that Raft refines Adore.
▶ Automated extraction from the Coq Raft specification to executable OCaml.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Contributions

▶ Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

▶ Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

▶ Several practical instantiations of Adore’s generic reconfiguration.

▶ Coq proof that Raft refines Adore.
▶ Automated extraction from the Coq Raft specification to executable OCaml.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Contributions

▶ Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

▶ Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

▶ Several practical instantiations of Adore’s generic reconfiguration.
▶ Coq proof that Raft refines Adore.

▶ Automated extraction from the Coq Raft specification to executable OCaml.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Contributions

▶ Adore: A novel abstraction for consensus with a generic hot reconfiguration
scheme.

▶ Coq proof of Adore’s safety. First mechanized safety proof of reconfigurable
consensus.

▶ Several practical instantiations of Adore’s generic reconfiguration.
▶ Coq proof that Raft refines Adore.
▶ Automated extraction from the Coq Raft specification to executable OCaml.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Network-Based Abstractions

A BS1

A BS2

A BS3

C A BS1

A BS2

A BS3

C

DS2 adds
D

D

One packet
dropped

Individual servers
with local logs

C uncommitted

A BS1

A BS2

A BS3

C

D S2 replicates
its log

D committedS1 and S2 disagree

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

State Machine Replication (SMR)

A B Log grows
atomically

Single log

A B

Uncommitted
commands hidden

D

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Atomic Distributed Object (ADO)

A B D
committed A B D

C

D

Single tree

D
proposedA B

C

Steps are atomic, no
network

Trunk committed
Branches uncommitted

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

The Best of Both Worlds

Network-Based Models
✓ Exposes enough detail for protocol-level reasoning.
× Mixes implementation and protocol-level logic.

SMR/ADO
✓ Atomic object model is more convenient.
× Loses too many important details.

Adore
✓ Atomic object model hides network-level communication.
✓ Retains enough information about local state for safety reasoning.

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore State

MCache
method=M

time=t

CCache
voters={...}

time=t

ECache
voters={...}

ldr=ID
time=t

RCache
config={...}

time=t

Created by pull
(prepare/election)

Created by push
(accept/commit)

Created by invoke
(local log update)

Created by reconfig
(local log update)

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Pull
Adore

Raft

S1
time=0

S2
time=0

S3
time=0

1. Ask for votes (packet dropped)
1. Ask for votes

2. Compare with local log
3. Vote

Empty Empty Empty

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Pull

ECache
voters={S1,S2}

ldr=S1
time=1

Adore

Raft

EmptyS1
time=1 EmptyS2

time=1 EmptyS3
time=0

1. Add ECache

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Invoke

ECache
voters={S1,S2}

ldr=S1
time=1

Adore

Raft

AS1
time=1 EmptyS2

time=1 EmptyS3
time=0

1. Append to log

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Invoke

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

Adore

Raft

AS1
time=1 EmptyS2

time=1 EmptyS3
time=0

1. Add MCache

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Push

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

Adore

Raft

AS1
time=1 EmptyS2

time=1 AS3
time=1

1. Replicate log (packet dropped)
1. Replicate log

3. Acknowledge
2. Update log

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Push

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

Adore

Raft

AS1
time=1 EmptyS2

time=1 AS3
time=1

CCache
voters={S1,S3}

time=1

1. Add CCache

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Steady State

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

Adore

Raft

AS1
time=1 EmptyS2

time=1 AS3
time=2

1. Ask for votes
1. Ask for votes (packet dropped)

2. Compare with local log
3. Vote

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Steady State

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

Adore

Raft

AS1
time=2 EmptyS2

time=1 AS3
time=2 B

1. Append to log

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Branching

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

Adore

ECache
voters={S1,S2}

ldr=S1
time=3

1. Add ECache

Raft

S1
time=3

S2
time=1

S3
time=2

1. Ask for votes (packet dropped)
1. Ask for votes

2. Compare with local log
3. Vote

A Empty A B

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Branching

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

Adore

Raft

AS1
time=3 EmptyS2

time=3 AS3
time=2 B

ECache
voters={S1,S2}

ldr=S1
time=3

C

MCache
method=C

time=3

1. Add MCache

1. Append to log

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Adore API — Branching

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

MCache
method=B

time=2

Adore

ECache
voters={S1,S2}

ldr=S1
time=3

MCache
method=C

time=3

CCache
voters={S1,S2}

time=3

1. Add CCache

Raft

AS1
time=3 AS2

time=3 AS3
time=2

1. Replicate log
1. Replicate log (packet dropped)

3. Acknowledge
2. Update log

C C B

Config is {S1,S2,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration in Adore

ECache
voters={S1,S2}

ldr=S1
time=1

MCache
method=A

time=1

CCache
voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3
time=2

RCache
config=

{S1,S2,S3,S4}
time=2

S3's config is now
{S1,S2,S3,S4}Config is {S1,S2,S3}

AS1
config={S1,S2,S3} Empty A +S4S2

config={S1,S2,S3}
S3

config={S1,S2,S3,S4}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

RCache
config=C'Rule 1

Original config = C New config = C'

∀Q ⊆ C. ∀Q' ⊆ C'.
is_quorum(Q) ∧
is_quorum(Q') ⇒

Q ∩ Q' ≠ ∅

RCache
config=C

RCache
config=C'...Rule 2

Must be a CCache
between

ECache RCache
config=C...

Must be a CCache
between

Rule 3

...

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters={S1,S2} MCache CCache

voters={S1,S3}

ECache
voters={S1,S3} MCache

ECache
voters={S1,S2}

{S1,S2} ∩ {S1,S3} = {S1}

{S1,S3} ∩ {S1,S2}
= {S1}

{S1,S3} ∩ {S1,S3}
= {S1,S3}

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

RCache
config=C'Rule 1

Original config = C New config = C'

∀Q ⊆ C. ∀Q' ⊆ C'.
is_quorum(Q) ∧
is_quorum(Q') ⇒

Q ∩ Q' ≠ ∅

RCache
config=C

RCache
config=C'...Rule 2

Must be a CCache
between

ECache RCache
config=C...

Must be a CCache
between

Rule 3

...

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

No Rule 3 leads to a
safety bug

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

No Rule 3 leads to a
safety bug

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

RCache
config=

{S1,S2,S4}
time=2

No Rule 3 leads to a
safety bug

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

{S2,S4} is a quorum of
{S1,S2,S4}

No Rule 3 leads to a
safety bug

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

ECache
voters={S1,S3}

ldr=S1
time=3

{S1,S3} is a quorum of
{S1,S2,S3}

No Rule 3 leads to a
safety bug

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

ECache
voters={S1,S3}

ldr=S1
time=3

MCache
method=A

time=3

CCache
voters={S1,S3}

time=3

CCaches on different branches
= consistency is broken

No Rule 3 leads to a
safety bug

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

MCache
method=A

time=2

CCache
voters=

{S2,S3,S4}
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

Required by Rule 3

Rule 3 prevents the
safety bug

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Reconfiguration Rules

ECache
voters=

{S1,S2,S3}
ldr=S1
time=1

Original config =
{S1,S2,S3,S4}

RCache
config=

{S1,S2,S3}
time=1

ECache
voters=

{S2,S3,S4}
ldr=S2
time=2

MCache
method=A

time=2

CCache
voters=

{S2,S3,S4}
time=2

RCache
config=

{S1,S2,S4}
time=2

CCache
voters={S2,S4}

time=2

ECache
voters={S1,S3}

ldr=S1
time=3

Now impossible

S3 voted here already

Rule 3 prevents the
safety bug

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

t ≠ t' because ?

Nearest common
CCache ancestor

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

t ≠ t' because configs are
equal so Q ∩ Q' ≠ ∅

No RCaches

No RCaches

Nearest common
CCache ancestor

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

t ≠ t' because Q ∩ Q' ≠ ∅
by Rule 1

No RCaches

No RCaches

RCache

Nearest common
CCache ancestor

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

Impossible by Rule 2

No RCaches

No RCaches

RCache RCache

Nearest common
CCache ancestor

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

No RCaches

No RCaches

RCache

RCacheNearest common
CCache ancestor

Impossible by Rule 3

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Proving Safety

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

rdist = 0 + 0 = 0

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

rdist = 0 + 1 = 1

RCache

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

...

rdist = 0 + 2 = 2

RCache RCache

ECache
voters=Q

time=t

ECache
voters=Q'

time=t'

CCache

...

... RCache

RCache

rdist = 1 + 1 = 2

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Generalized Quorums

▶ Safety proved once for generic reconfiguration scheme.
▶ Can be instantiated many times with minimal proof effort.
▶ Details in Section 6 of the paper.

SafeAdore(GenReconfig)

SafeAdore(SingleServer) SafeAdore(JointConsensus) SafeAdore(DynamicQuorum) SafeAdore(PrimaryBackup)

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Refinement

▶ Refinement between Raft network-based specification and Adore.
▶ Also generic with respect to reconfiguration scheme.
▶ Details in Section 5 of the paper.

stAdore st'Adore

stRaft st'Raft

R R

stepAdore

stepRaft

∀ stRaft ∃ stAdore R(stRaft,stAdore)

SafeAdore

SafeRaft

R

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Extraction

▶ Automated extraction from Coq specification to executable OCaml.
▶ Safety guaranteed through Adore and refinement.
▶ Evaluation in Section 7 of the paper.

Adore

Raft Spec

R

Raft
Executable

Extract

Overview Distributed System Abstractions Adore in Theory Adore in Practice Conclusion

Conclusion

▶ Adore: A novel protocol-level abstraction for consensus.
▶ First safety proof for consensus with generic hot reconfiguration schemes.
▶ Refinement with network-level specification and extraction to executable.

Proof Effort

Language Proof LOC Proof Time
Adore

Reusable Library
Coq

∼6k 2 person-weeks
Safety Proof ∼4k 3 person-weeks

Total ∼10k 5 person-weeks

MongoRaftReconfig1 TLA+ ∼3k 5–6 person-months

1William Schultz, Ian Dardik, and Stavros Tripakis. 2022. Formal Verification of a Distributed
Dynamic Reconfiguration Protocol. CPP ’22

Generalized Quorums

S1 S2 S3Original Config
Quorum size: 2

Final Config
Quorum size: ?

S1 S2 ∩ ≠
Original-final overlap

?

∧ is_quorum(?

? ∅

∀ ? ⊆ ?

) ⇒

Generalized Quorums

S1 S2 S3

S1 S2

S4Original Config
Quorum size: 3

Final Config
Quorum size: 2

S1 S2 ∩ =

Original-final overlap

S2
S3

S2 S3S4

Generalized Quorums

S1 S2 S3

S1 S2 S4 S5 S6

Original Config
Quorum size: 2

Final Config
Quorum size: 3

S1 S2
S4 S5 S6

∩ =

Original-joint overlap
S1 S2 S4 S5 S6

Joint Config
Quorum size: (2,3)

S1 S2 S3

S2 S3
S2

S1 S4
S2 S5 S6

∩ =
S2 S3

S5

Final-joint overlap

S5

Generalized Quorums

S1 S2 S3

S1 S2 S4

Original Config
Quorum size: 2

Final Config
Quorum size: 4

S1 S3 ∩ =

Original-final overlap

S1S1 S2
S5 S6

S5 S6

	Overview
	Distributed System Abstractions
	Adore in Theory
	Adore in Practice
	Conclusion
	Appendix

